Acrobat
Bicycle
Blue Crown
Boland
Card-Shark
Chaks
Copag
Copag 310
Djeco Magic
Ellusionist
Erfurth
Festartikel Müller
Giobbi Magic
Grimas
Handlordz
JL Magic
Kosmos
Kreis Magic
Magic by Freddy's
Magic Makers
Magic Smith
Marvin's Magic
Mister Babache
Murphysmagic
Needful Things
OID Magic
Orlob
Palmer Magic
Paul Harris
Piatnik
Propdog
Qualatex
Razamatazz
Roy Kueppers
RSVP
Rubies
Sanders FX
Sankey Magic
SansMinds
Smiffys
Steve Fearson
Talking Tables
Tango Magic
Tenyo Magic
Theory 11
Tobar
Vernet Magic
Viking Magic
Widman
Yigal Mesika
Zauberparadies

Nightclub Champagne Playing Cards

Artikelnummer: MR66353

Verfügbarkeit: Auf Lager

15,90 CHF
Inkl. 7.7% Mwst.

Wir bearbeiten Ihre Bestellung in der Regel innert 24h. Wählen Sie dann die gewünschte Versandart. Bestellungen die vor 15:30 Uhr eintreffen, werden von MO-FR noch gleichentags verarbeitet. 

Die Abholung von vorbestellten Artikeln ist auch in unserem Laden Schminkparadies.ch möglich. Hier haben wir auch Spielkarten und Zauberkästen ausgestellt. Beratung für Zauberartikel nur auf Voranmeldung. 

Details

LIMITED EDITION: Only 2500 printed! Will NOT be reprinted.

Nightclub Playing Cards has two editions: Champagne Edition & UV Edition. Both boxes were designed to be visually appealing.

The bright colors already make us understand the mood of this deck: lively, cheerful, fun. With only a glance, they perfectly communicate the message that these cards want to give: THANK GOD IT'S FRIDAY!

In collaboration with Alexmagix and Daro Genuardi. Our vision for this particular deck is that it is suitable for magicians, cardists, and any person who likes art and clubs. To achieve our goal, we have changed the back design more than 10 times, making even the smallest adjustments on the positioning of the single elements. In this way, we have obtained a homogeneous result that will allow you to distinguish and appreciate every detail.

  • Fully marked
  • Limited edition of 2500
  • Completely customized
  • Printed by USPCC with Bee crushed

Zusatzinformationen

ManufacturerDiverse